Call for Abstract

15th International Pharmaceutical Microbiology and Biotechnology Conference, will be organized around the theme “To magnify the knowledge in the field of Microbiology and Biotechnology ”

Pharmaceutical Microbiology 2017 is comprised of keynote and speakers sessions on latest cutting edge research designed to offer comprehensive global discussions that address current issues in Pharmaceutical Microbiology 2017

Submit your abstract to any of the mentioned tracks.

Register now for the conference by choosing an appropriate package suitable to you.

Pharmaceutical Microbiology deals with the study of microorganisms that is concerned within the manufacture of prescribed drugs e.g. minimizing the quantity of microorganisms in an exceedingly method setting, excluding microorganisms and microorganism by-products like exotoxin and endotoxin from water and alternative beginning materials, and making certain the finished pharmaceutical product is sterile. Alternative aspects of pharmaceutical biological science embrace the analysis and development of anti-infective agents, the employment of microorganisms to sight agent and malignant neoplastic disease activity in prospective medication, and therefore the use of microorganisms within the manufacture of pharmaceutical product like endocrine and human human growth hormone.

The microbiology market has significantly grown in recent years as the demand from end user industries increases. With this expansion and increased demand comes hurdles for the industry.

  • Track 1-1New trends in Pharmaceutical Microbiology
  • Track 1-2Metabolic engineering
  • Track 1-3Fermenters and Fermentation
  • Track 1-4Microbes in clinical perspective
  • Track 1-5Microbial Nanotechnologies
  • Track 1-6Microbial monitoring for biological drugs
  • Track 1-7Real-time waterborne microbial detection
  • Track 1-8New trends in detection of micro organisms
  • Track 1-9 Microbial chemotherapy
  • Track 1-10Biofilms
  • Track 1-11Trends in biotechnology
  • Track 1-12 Biopharmaceuticals
  • Track 1-13Microbial fuel cells
  • Track 1-14Agricultural Microbiology
  • Track 1-15Beneficial micro organism
  • Track 1-16Innovations
  • Track 1-17Industrial Microbiology
  • Track 1-18Future approaches

Microbiology is the study of microscopic organisms, such as bacteria, viruses, archaea, fungi and protozoa. This discipline includes fundamental research on the biochemistry, physiology, cell biology, ecology, evolution and clinical aspects of microorganisms, including the host response to these agents.

Eukaryotic micro-organisms possess membrane-bound cell organelles and include fungi and protists, whereas prokaryotic organisms—all of which are microorganisms—are conventionally classified as lacking membrane-bound organelles and include eubacteria and archaebacteria. Microbiologists traditionally relied on culture, staining, and microscopy. However, less than 1% of the microorganisms present in common environments can be cultured in isolation using current means. Microbiologists often rely on extraction or detection of nucleic acid, either DNA or RNA sequences.

Viruses have been variably classified as organisms, as they have been considered either as very simple microorganisms or very complex molecules. Prions, never considered microorganisms, have been investigated by virologists, however, as the clinical effects traced to them were originally presumed due to chronic viral infections, and virologists took search—discovering "infectious proteins".

  • Track 2-1Bacteriology
  • Track 2-2Molecular microbiology
  • Track 2-3Nano microbiology
  • Track 2-4Exo microbiology
  • Track 2-5Predictive microbiology
  • Track 2-6Applied microbiology
  • Track 2-7Water Microbiology & Novel Technologies
  • Track 2-8Medical microbiology
  • Track 2-9Industrial microbiology
  • Track 2-10Microbial biotechnology
  • Track 2-11Food microbiology
  • Track 2-12Agricultural microbiology
  • Track 2-13Veterinary microbiology
  • Track 2-14Environmental microbiology
  • Track 2-15Systems microbiology
  • Track 2-16Generation microbiology
  • Track 2-17Mycology
  • Track 2-18Protozoology
  • Track 2-19Phycology or algology
  • Track 2-20Parasitology
  • Track 2-21Immunology
  • Track 2-22Virology
  • Track 2-23Nematology
  • Track 2-24Microbial cytology
  • Track 2-25Microbial physiology
  • Track 2-26Microbial ecology
  • Track 2-27Microbial genetics
  • Track 2-28Cellular microbiology
  • Track 2-29Evolutionary microbiology
  • Track 2-30Aeromicrobiology

Biotechnology is the use of living systems and organisms to develop or make products, or "any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use". Depending on the tools and applications, it often overlaps with the (related) fields of bioengineering, biomedical engineering, biomanufacturing, molecular engineering, etc.

For thousands of years, humankind has used biotechnology in agriculture, food production, and medicine. The term is largely believed to have been coined in 1919 by Hungarian engineer Károly Ereky. In the late 20th and early 21st centuries, biotechnology has expanded to include new and diverse sciences such as genomics, recombinant gene techniques, applied immunology, and development of pharmaceutical therapies and diagnostic tests.

  • Track 3-1Bioinformatics
  • Track 3-2Biotechnology and its Applications
  • Track 3-3Algal Biotechnology
  • Track 3-4Biomass and Bioenergy
  • Track 3-5Bioremediation and Biodegradation
  • Track 3-6Environmental Biotechnology
  • Track 3-7Plant and Agriculture Biotechnology
  • Track 3-8Reproductive Biotechnology
  • Track 3-9Nanobiotechnology
  • Track 3-10Pharmaceutical Biotechnology
  • Track 3-11Systems and Synthetic Biotechnology
  • Track 3-12Genetic Engineering and rDNA Technology
  • Track 3-13Biotechnology in Medical and Healthcare
  • Track 3-14Microbial Biotechnology
  • Track 3-15Industrial Biotechnology
  • Track 3-16Biorobotics
  • Track 3-17Bioprocess engineering
  • Track 3-18Current Scenario in Biotechnology

Antibiotics are a type of antimicrobials that are used in treatment and prevention of bacterial infections. They may kill or inhibit the growth of bacteria. Many antibiotics are also effective against protozoans and fungi; some are toxic to humans and animals also, even when given in therapeutic dosage. Antibiotics are not effective against viruses such as common cold or influenza, and may be harmful when taken inappropriately. Physicians must ensure the patient has a bacterial infection before prescribing antibiotics.

The golden age of the discovery of antibiotics from 1940 to the early 1970s marked the beginning of a new era in human and animal health and the dramatic increase in human life expectancy. Indeed, the possibility of eradicating infectious diseases seemed possible. However, it soon became apparent that the microorganisms would not be defeated so easily. Their weapon: resistance to antibiotics. Today, resistance to microbial antibiotics rapidly depletes our supply of effective compounds and the possibility of a global public health disaster seems likely. The urgency of this situation has spawned a plethora of new multidisciplinary research initiatives in search of new antibiotics and other antimicrobial agents.

  • Track 4-1Antibiotics, invention and innovation
  • Track 4-2Clinical Trials of Antibiotics
  • Track 4-3Modern Antibiotics for Various Diseases and Infections
  • Track 4-4Antibiotic Regulatory Affairs
  • Track 4-5Advances in Antibiotic Treatment
  • Track 4-6Antibiotics for Cancer
  • Track 4-7Antibiotics: In Pregnancy and Lactation
  • Track 4-8Antibiotics for Diabetes
  • Track 4-9Antibiotics: Market Analysis & Business Opportunities
  • Track 4-10Antibiotic Prophylaxis
  • Track 4-11Micro Organisms in Recent Drug Discovery
  • Track 4-12Different Types of Antibiotics and their Applications
  • Track 4-13Antibiotics and Mechanism of Action
  • Track 4-14Encouraging Antibiotic Innovation
  • Track 4-15Antibiotic pipeline
  • Track 4-16Molecular Microbiology
  • Track 4-17New class of antibiotics discovered
  • Track 4-18 A Plan For New Antibiotics
  • Track 4-19The Emergence of Antimicrobial Resistance
  • Track 4-20Antibiotic Resistance: Opportunities and Challenges
  • Track 4-21Drug Discovery and Novel Delivery Technologies
  • Track 4-22Antibiotics for Emerging and Re-emerging Diseases
  • Track 4-23Antibiotics in Different Industries

The study of macromolecules and macromolecular mechanisms that has an appearance in living organisms is called molecular biotechnology. The main objective of Molecular Biotechnology is to focus on the structure and function of the gene, the nature of the gene, gene replication, gene expressions and mutations. The concept of Molecular Biotechnology was introduced in the 1930s and 1940s and was not only imminent in the early stages of its introduction but gained importance in the 1950s and 1960s. The use of biotechnology Molecular was made by geneticists, structural chemists and physicists. Francis Crick introduced himself as a molecular biologist and further described as "a mixture of a crystallographer".

This implies more room for manufacture for different types of research and analysis. The different types of research involved are immunology, microbiology, genetics, cell biology and molecular biology. The importance of molecular biotechnology is becoming an imminent process in the field of agriculture. The main objective of Molecular Biotechnology is to understand the different biological processes involved and the creation of sensitive products.
 

  • Track 5-1Translational Genomics
  • Track 5-2Virus-Cell Interaction
  • Track 5-3Computational Metagenomics
  • Track 5-4Molecular Medicine and Pathology
  • Track 5-5Genetic Engineering
  • Track 5-6Cell & Gene Therapy
  • Track 5-7Molecular Immunology
  • Track 5-8Clinical Genetics
  • Track 5-9Pharmacogenetics
  • Track 5-10Molecular Genetic Pathology
  • Track 5-11Gene Mapping
  • Track 5-12Computational Genomics
  • Track 5-13Genetic Transformation
  • Track 5-14Genetic Screening
  • Track 5-15Regulation of Gene Expression
  • Track 5-16Genetic Transplantation
  • Track 5-17Artificial Biology
  • Track 5-18Synthetic and Structural Vaccinology
  • Track 5-19Biomarkers
  • Track 5-20Molecular Biology
  • Track 5-21Integrative biology
  • Track 5-22Transcriptional neurobiology
  • Track 5-23Molecular and Microbial Genetics
  • Track 5-24Microbes and medicine
  • Track 5-25Applied and Environmental Microbiology
  • Track 5-26Axonal neurobiology
  • Track 5-27Neuro-Epigenetics
  • Track 5-28Stem cells and regenerative medicine
  • Track 5-29Molecular Neuropathology
  • Track 5-30Molecular Virology
  • Track 5-31Developmental Neurobiology
  • Track 5-32Molecular Cancer Genetics (LMCG)
  • Track 5-33Computational Oncology
  • Track 5-34RNA Biology and Biotechnology
  • Track 5-35Cytogenetics

Medical biotechnology is the use of living cells and cellular materials for the research and production of pharmaceutical and diagnostic products that help to treat and prevent human diseases. Most medical biotechnologists work in academic or industrial settings. In university laboratories, these professionals conduct experiments in the framework of medical research studies; Industrial biotechnologists work on the development of drugs or vaccines. The field of medical biotechnology has made it possible to market microbial pesticides, insect resistant crops and environmental cleaning techniques.

Examples of discoveries in the field of medical biotechnology include insulin and growth hormone. The two discoveries were the result of research related to deoxyribonucleic acid (DNA). Many scientists in the field of medical biotechnology are studying genetic engineering. This involves the isolation, identification and sequencing of human genes to determine their functions. Working in this arena may eventually lead to remedies for certain diseases, such as Parkinson's disease and Alzheimer's syndrome.

  • Track 6-1Infectious diseases
  • Track 6-2Chronic diseases
  • Track 6-3Vaccines and diagnostics
  • Track 6-4Human genetics and genome analysis
  • Track 6-5Stem cell research
  • Track 6-6Regenerative medicine
  • Track 6-7Biodesign
  • Track 6-8Bioengineering
  • Track 6-9Stem Cell Biology

Agents that is capable of acting against infection, by inhibiting the spread of an infectious agent or by killing the infectious agent outright, is known as anti-infective agent. Anti-infective is a general term that involves antifungals, antibiotics, anti-bacterial, anti-protozoans and antivirals.

The primary goal of final pharmaceutical product is Quality and Safety. Active Pharmaceutical Ingredients (API’s), used as ingredients in sterile medicinal products, must be sterile unless the final dosage form is terminally sterilized, or produced by a process including a sterilising filtration step. API’s intended for use in parenteral products must also comply with relevant specifications on bacterial endotoxins or pyrogens.

The manufacture of sterile API’s must be strictly controlled in order to reduce the risk of contamination with micro-organisms, endotoxins and particles. If the final dosage form is not to be sterilised by filtration, the API’s should be practically free of particles.

  • Track 7-1Clinical research
  • Track 7-2penicillins
  • Track 7-3Antituberculosis agents
  • Track 7-4Antimalarial agents
  • Track 7-5Antifungals
  • Track 7-6Anthelmintics
  • Track 7-7Aminoglycosides
  • Track 7-8Amebicides
  • Track 7-9Anti-Infectives Drug Discovery
  • Track 7-10Histoplasma capsulatum

In the areas of medicine, biotechnology and pharmacology, drug discovery is the process by which new drug candidates are discovered. Historically, drugs have been discovered by identifying the active ingredient from traditional remedies or by fortuitous discovery. Subsequent chemical libraries of small synthetic molecules, natural products or extracts have been screened in intact cells or whole organisms to identify substances that have a desirable therapeutic effect in a process known as conventional pharmacology. Since the sequencing of the human genome has allowed for the rapid cloning and synthesis of large amounts of purified proteins, it has become common to use high throughput screening of large compound libraries against isolated biological targets that are assumed to be a modification Of the disease in a process known as reverse pharmacology. The results of these screens are then tested in cells and then in animals for efficacy.

Drug development is the process of introducing a new pharmaceutical drug to the market once a lead compound has been identified by the drug discovery process. It includes pre-clinical research on micro-organisms and animals, the filing of regulatory status, such as through the US Food and Drug Administration for a new experimental drug to launch clinical trials on Humans and may include the step of getting regulatory approval with a new Drug to market the drug.

  • Track 8-1Drug targets
  • Track 8-2Antibody Research
  • Track 8-3 Recent Advances in Spectroscopy
  • Track 8-4Proteomics Drug Discovery
  • Track 8-5Pharmaceutical Research & Development
  • Track 8-6Computational chemistry
  • Track 8-7Advanced Trends in Medicinal Chemistry in drug discovery and designing
  • Track 8-8Insilco Drug Discovery
  • Track 8-9Innovative Drug Discovery and Nanotechnology
  • Track 8-10Novel Detection Technologies and Drug Discovery
  • Track 8-11Immunotherapy
  • Track 8-12Biomarkers in Drug Discovery & Development
  • Track 8-13Screening and design
  • Track 8-14Pharmaceutical drugs
  • Track 8-15Clinical Research
  • Track 8-16Clinical Trials
  • Track 8-17Orphan Drugs
  • Track 8-18 Pre-clinical research
  • Track 8-19Drug Designing
  • Track 8-20Perspective In Drug Discovery
  • Track 8-21Computer Aided Drug Design (CADD)
  • Track 8-22Novel Therapeutic approaches in treating Ocular Diseases

Antibiotics are a type of antimicrobials that are used in treatment and prevention of bacterial infections. They may kill or inhibit the growth of bacteria. Many antibiotics are also effective against protozoans and fungi; some are toxic to humans and animals also, even when given in therapeutic dosage. Antibiotics are not effective against viruses such as common cold or influenza, and may be harmful when taken inappropriately. Physicians must ensure the patient has a bacterial infection before prescribing antibiotics. Antibiotic resistance invoke especially to the resistance to antibiotics that occurs in common bacteria that cause infection. The easy approach and capability of Antibiotics led to overuse in live-stock raising promotes bacteria to flourish resistance. This led to comprehensive problems with antibiotic resistance.

Antimicrobial stewardship is a coordinated program that promotes the appropriate use of antimicrobials (including antibiotics), improves outcomes for patients, reduces microbial resistance, and reduces the spread of infections caused by multidrug resistant organisms.

The abuse of antimicrobials is one of the most pressing public health problems in the world. Infectious organisms adapt to antimicrobials designed to kill them, making medicines ineffective. People infected with antimicrobial resistant organisms are more likely to have longer and more expensive hospital stays and may be more likely to die as a result of infection.

  • Track 9-1Antimicrobials
  • Track 9-2Research and development
  • Track 9-3Antimicrobial Resistance & Infection Control

Biomedical engineering (BME) is the application of engineering principles and design concepts to medicine and biology for healthcare purposes (e.g. diagnostic or therapeutic). This field seeks to close the gap between engineering and medicine, combining the design and problem solving skills of engineering with medical and biological sciences to advance health care treatment, including diagnosis, monitoring, and therapy. Biomedical engineering has only recently emerged as its own study, compared to many other engineering fields. Such an evolution is common as a new field transitions from being an interdisciplinary specialization among already-established fields, to being considered a field in itself. Much of the work in biomedical engineering consists of research and development, spanning a broad array of subfields. Prominent biomedical engineering applications include the development of biocompatible prostheses, various diagnostic and therapeutic medical devices ranging from clinical equipment to micro-implants, common imaging equipment such as MRIs and EEGs, regenerative tissue growth, pharmaceutical drugs and therapeutic biological.

  • Track 10-1 Biocompatible prostheses
  • Track 10-2Clinical engineering
  • Track 10-3Bionics
  • Track 10-4Pharmaceutical engineering
  • Track 10-5Neural engineering
  • Track 10-6Genetic engineering
  • Track 10-7Tissue engineering
  • Track 10-8Biomedical optics
  • Track 10-9Biomaterial
  • Track 10-10Biomechanics
  • Track 10-11Bioinformatics
  • Track 10-12Therapeutic biologicals
  • Track 10-13Pharmaceutical drugs
  • Track 10-14Regenerative tissue growth
  • Track 10-15 Medical devices
  • Track 10-16Rehabilitation engineering

Clinical microbiology is a branch of medicine concerned with the prevention, diagnosis and treatment of infectious diseases caused by four kinds of microorganisms i.e. bacteria, fungi, parasites and viruses. In addition, this field of science studies various clinical applications of microbes for the improvement of health.

Rapid identification of microorganisms in the clinical microbiology laboratory can be of great value in selecting optimal patient management strategies for infections caused by bacteria, viruses, fungi, mycobacteria and parasites. Rapid identification of microorganisms in clinical specimens allows rapid de-escalation of broad spectrum agents to targeted antimicrobial therapy. Switching to appropriate therapy minimizes the risk of antibiotics, including disturbance of normal flora, toxic side effects and selective pressure. There is a critical need for new technologies in clinical microbiology, particularly for blood flow infections, the associated mortality among which is among the highest of all infections. It is equally important that the clinical laboratory community adopt laboratory experimental medicine practices and collaborate in translational research projects to establish clinical utility, cost-benefit and the impact of new technologies.

  • Track 11-1Clinical Immunology
  • Track 11-2Allergy
  • Track 11-3Autoimmunity
  • Track 11-4Cancer immunology and immunotherapy
  • Track 11-5Inflammation
  • Track 11-6Phagocytosis
  • Track 11-7Immunotherapy and Vaccines
  • Track 11-8Humoral Adaptive Immune System
  • Track 11-9Immune System Development
  • Track 11-10Transplantation
  • Track 11-11Clonal Selection and Expansion
  • Track 11-12Humoral Immune Effectors Functions
  • Track 11-13Neutralization of antigen by secreted antibody
  • Track 11-14Opsonization of Antigen
  • Track 11-15Mucosal Immunity
  • Track 11-16Antibody-dependent cell cytotoxicity (ADCC)
  • Track 11-17Immediate hypersensitivity
  • Track 11-18Neonatal Immunity
  • Track 11-19Activation of the classical complement pathway
  • Track 11-20Cell-mediated adaptive immune system
  • Track 11-21Clinical Perspectives- Transplantation rejection
  • Track 11-22Clinical Perspectives- Hypersensitivity

A biopharmaceutical product, also known as a biological (biological) or biological (biological) product, is any pharmaceutical drug product manufactured, extracted or semi-synthesized from biological sources. Different pharmaceutical products synthesized include vaccines, blood, blood components, allergens, somatic cells, gene therapies, tissues, recombinant therapeutic proteins and living cells used in cell therapy. Biological products can be composed of sugars, proteins or nucleic acids or complex combinations of these substances or may be living cells or tissues. They (or their precursors or components) are isolated from living sources - human, animal, plant, fungal or microbial.

The terminology surrounding biopharmaceuticals varies between groups and entities, with different terms referring to different subsets of therapeutics in the general biopharmaceutical category. Some regulators use the terms "biological drugs" or "therapeutic biologics" to refer specifically to macromolecular products manufactured such as protein and nucleic acid drugs, distinguishing them from products such as blood, blood components Or vaccines, Biological. Specialty drugs, a recent classification of pharmaceuticals, are high-priced drugs that are often biologics.

  • Track 12-1Vaccines
  • Track 12-2Generic drugs
  • Track 12-3Biopharmaceutical Companies & Market Analysis
  • Track 12-4Herbal Drug Interactions
  • Track 12-5Interpenetrating Polymer Network as DDS
  • Track 12-6Nanoparticles-An Innovative Drug Delivery System
  • Track 12-7Protein Interactions as Targeted Therapeutics
  • Track 12-8Regulatory Sciences
  • Track 12-9Biowaiver
  • Track 12-10Biological Medicine
  • Track 12-11Biologic Drugs
  • Track 12-12Array of Clinical Trials in Biopharmaceutics
  • Track 12-13Applied Biopharmaceutics
  • Track 12-14Xenobiotics
  • Track 12-15recombinant DNA technology
  • Track 12-16Biosimilars
  • Track 12-17Gene therapy
  • Track 12-18Biogenomic in emergency medicine

Cosmeceuticals refers to the combination of cosmetic and pharmaceutical products. Cosmeceuticals are cosmetic products with biologically active ingredients claiming to have medical or drug-like benefits.

Dermatological research suggests that the bioactive ingredients used in cosmeceuticals have benefits beyond the traditional moisturizer. However, despite reports of profits from some cosmeceutical products, there is no requirement to prove that these products live up to their claims.

The label "cosmeceutical" applies only to products applied locally, such as creams, lotions and ointments. Products that are similar in perceived benefits but ingested orally are known as nutricosmetics.

  • Track 13-1Cosmetics and Pharmaceuticals
  • Track 13-2Antioxidant
  • Track 13-3 Clinical trials

Industrial and Microbial Biotechnology uses enzymes and micro-organisms to make bio based products in sectors such as chemicals, food and feed, detergents, paper and pulp, textiles and bioenergy (such as biofuels or biogas). In doing so, it uses renewable raw materials and is one of the most promising, innovative approaches towards lowering greenhouse gas emissions. The application of industrial biotechnology has been proven to make significant contributions towards mitigating the impacts of climate change in these and other sectors.

In addition to environmental benefits, biotechnology can improve industry’s performance and product value and, as the technology develops and matures, white biotechnology will yield more and more viable solutions for our environment. These innovative solutions bring added benefits for both our climate and our economy.

The rapid developments in biotechnology and the applications of genetic engineering to practical human problems have allowed the advancement of pharmaceutical biotechnology at a staggering pace. Furthermore, the release of the human genome sequence has also been key for the identification of human genetic diseases and the design of revolutionary approaches for their treatment.

Genetic engineering involves altering DNA molecules outside an organism, making the resultant DNA molecules function in living cells. Many of these cells have been genetically engineered to produce substances that are medically useful to humans.

Pharmaceutical biotechnology involves the use of living organisms such as microorganisms to create new pharmaceutical products, or safer and more effective versions of conventionally produced pharmaceuticals, more cost-effectively.

Since the manufacture of the first recombinant pharmaceutical, insulin, there has been a burst in the generation of new recombinant drugs, some of which will be covered later on in this chapter. Furthermore, the use of recombinant DNA technology has spread further allowing the development of not only subunit vaccines, such as the one used in the prevention of hepatitis B, but also attenuated vaccines vector vaccines and DNA vaccines. One of pharmaceutical biotechnology’s great potentials lies in gene therapy, which consists of the insertion of genetic material into cells to prevent, control or cure disease. It encompasses repairing or replacing defective genes and making tumours more susceptible to other kinds of treatment.

  • Track 15-1Vaccines and Antibiotics
  • Track 15-2Protein Engineering
  • Track 15-3Biotechnology in Forensic Medicine
  • Track 15-4Microarray Technology
  • Track 15-5Clinical Research/Clinical Trials
  • Track 15-6Personalized Medicine
  • Track 15-7Biomarkers
  • Track 15-8Biopharmaceutical Manufacturing and Diagnostics
  • Track 15-9Downstream Processing of Biopharmaceuticals
  • Track 15-10Technological and Clinical Aspects of Biopharmaceuticals
  • Track 15-11Biopharmaceuticals Discovery
  • Track 15-12Bioinformatics

Healthcare biotechnology refers to a medicinal or diagnostic product or a vaccine that consists of, or has been produced in, living organisms and may be manufactured via recombinant technology (recombinant DNA is a form of DNA that does not exist naturally. It is created by combining DNA sequences that would not normally occur together). This technology has a tremendous impact on meeting the needs of patients and their families as it not only encompasses medicines and diagnostics that are manufactured using a biotechnological process, but also gene and cell therapies and tissue engineered products. Biotechnology offers patients a variety of new solutions such as: Unique, targeted and personalized therapeutic and diagnostic solutions for particular diseases or illnesses, An unlimited amount of potentially safer products, Superior therapeutic and diagnostic approaches, Higher clinical effectiveness because of the biological basis of the disease being known, Development of vaccines for immunity, Treatment of diseases, Cultured Stem Cells and Bone Marrow Transplantation, Skin related ailments and use of cultured cell, Genetic Counseling, Forensic Medicine, Gene Probes, Genetic Fingerprinting, Karyotyping.

Biomanufacturing is a type of manufacturing or biotechnology that uses biological systems to produce biomaterials and biomolecules that are commercially important for drugs, food and beverage processing, and industrial applications. Organically produced products are recovered from natural sources, such as blood, or cultures of microbes, animal cells or plant cells grown in specialized equipment. The cells used during production may have been naturally produced or derivatives using genetic engineering techniques. 

  • Track 17-1Bio-fuels
  • Track 17-2Energy Crops (cellulosic ethanol industry)
  • Track 17-3Industrial Enzymes
  • Track 17-4Bioprocess Engineering and Optimization

Regenerative medicine is a branch of translational research in tissue engineering and molecular biology which deals with the "process of replacing, engineering or regenerating human cells, tissues or organs to restore or establish normal function". This field holds the promise of engineering damaged tissues and organs by stimulating the body's own repair mechanisms to functionally heal previously irreparable tissues or organs.

Regenerative medicine also includes the possibility of growing tissues and organs in the laboratory and implanting them when the body cannot heal itself. If a regenerated organ's cells would be derived from the patient's own tissue or cells, this would potentially solve the problem of the shortage of organs available for donation, and the problem of organ transplant rejection.

Some of the biomedical approaches within the field of regenerative medicine may involve the use of stem cells. Examples include the injection of stem cells or progenitor cells obtained through directed differentiation (cell therapies); the induction of regeneration by biologically active molecules administered alone or as a secretion by infused cells (immunomodulation therapy); and transplantation of in vitro grown organs and tissues (tissue engineering).

  • Track 18-1Stem Cells
  • Track 18-2Gene Therapy
  • Track 18-3Cell Based Therapy
  • Track 18-4Tissue Engineering
  • Track 18-5Cell Cultivation
  • Track 18-6Clinical Research/Clinical trials

A biofuel is a fuel that is produced by contemporary biological processes, such as agriculture and anaerobic digestion, rather than a fuel produced by geological processes such as those involved in the formation of fossil fuels such as coal and Oil, from prehistoric biological material. Biofuels can come directly from plants, or indirectly from agricultural, commercial, domestic and / or industrial wastes. Renewable biofuels typically involve the fixation of contemporary carbon, such as those that occur in plants or microalgae through the process of photosynthesis. Other renewable biofuels are made from the use or conversion of biomass (referring to living organisms recently, most often referring to plants or plant-derived materials). This biomass can be converted into suitable energy substances in three different ways: thermal conversion, chemical conversion and biochemical conversion. This conversion of the biomass can result in a fuel in solid, liquid or gaseous form. This new biomass can also be used directly for biofuels.

Bioethanol is an alcohol obtained by fermentation, mainly from carbohydrates produced in sugar or starch cultures such as corn, sugar cane or sweet sorghum. Cellulosic biomass, derived from non-food sources, such as trees and grasses, is also developed as a raw material for ethanol production. Ethanol can be used as fuel for vehicles in its pure form, but it is usually used as an additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the United States and Brazil. The current design of the facility does not convert the lignin portion of the plant raw materials into fuel components by fermentation.

Biodiesel can be used as a fuel for vehicles in its pure form, but is usually used as a diesel additive to reduce the levels of particulate matter, carbon monoxide and hydrocarbons in diesel vehicles. Biodiesel is produced from oils or fats by trans esterification and is the most common biofuel in Europe.

Biosafety is the prevention of large-scale loss of biological integrity, focusing both on ecology and human health. These prevention mechanisms include conduction of regular reviews of the biosafety in laboratory settings, as well as strict guidelines to follow. Biosafety is used to protect from harmful incidents. Many laboratories handling biohazards employ an on-going risk management assessment and enforcement process for biosafety. Failures to follow such protocols can lead to increased risk of exposure to biohazards or pathogens. Human error and poor technique contribute to unnecessary exposure and compromise the best safeguards set into place for protection.

Biosafety in agriculture, chemistry, medicine, exobiology and beyond will likely require the application of the precautionary principle, and a new definition focused on the biological nature of the threatened organism rather than the nature of the threat.

Bioethics is the study of the typically controversial ethical issues emerging from new situations and possibilities brought about by advances in biology and medicine. It is also moral discernment as it relates to medical policy and practice. Bioethicists are concerned with the ethical questions that arise in the relationships among life sciences, biotechnology, medicine, politics, law, and philosophy. It also includes the study of the more commonplace questions of values ("the ethics of the ordinary") which arise in primary care and other branches of medicine.

 

  • Track 20-1Biosafety Regulations
  • Track 20-2Intellectual Property Rights
  • Track 20-3Ethical Issues of Human Genome Project
  • Track 20-4Organs Transplantation and Stem Cell Research
  • Track 20-5Handling and Disposal of Hazardous Materials

This session will provide the opportunity to hear “both sides of the story” from a non-sterile aqueous product contamination case. Speakers will present both industry and FDA perspectives from an actual product contamination event, and the path taken to resolve the problem. Attendees will discover how FDA and industry worked together to solve a microbial product issue, and the lessons learned from the case.

  • Track 21-1Factors affecting choice of antimicrobial agent
  • Track 21-2Properties of the chemical agent
  • Track 21-3Mycobacterium tuberculosis
  • Track 21-4Vegetative bacteria
  • Track 21-5 Bacterial spores
  • Track 21-6Toxicity of the agent
  • Track 21-7Acids and esters
  • Track 21-8Benzoic acid
  • Track 21-9Sorbic acid
  • Track 21-10Sulphur dioxide, sulphites and metabisulphites
  • Track 21-11Esters of p-hydroxybenzoic acid (parabens)
  • Track 21-12Alcohols used for disinfection and antisepsis
  • Track 21-13Alcohols as preservatives
  • Track 21-14Aldehydes
  • Track 21-15Glutaraldehyde
  • Track 21-16Ortho-phthalaldehyde
  • Track 21-17Formaldehyde
  • Track 21-18Formaldehyde-releasing agents
  • Track 21-19Chlorhexidine and alexidine
  • Track 21-20Polyhexamethylene biguanides
  • Track 21-21Halogens
  • Track 21-22Hypochlorites
  • Track 21-23Organic chlorine compounds
  • Track 21-24Chloroform
  • Track 21-25Iodine
  • Track 21-26Iodophors
  • Track 21-27Heavy metals
  • Track 21-28Mercurials
  • Track 21-29Hydrogen peroxide and peroxygen compounds
  • Track 21-30Phenols
  • Track 21-31Phenol (carbolic acid)
  • Track 21-32 Clear soluble fluids, black fluids and white fluids
  • Track 21-33Synthetic phenols
  • Track 21-34 Bisphenols
  • Track 21-35 Surface-active agents
  • Track 21-36Cationic surface-active agents
  • Track 21-37Diamidines
  • Track 21-38Dyes
  • Track 21-39Quinoline derivatives
  • Track 21-40Antimicrobial combinations and systems
  • Track 21-41Disinfection policies

Due to multidisciplinary nature of the field of biotechnology, a wide range of different branches of science have made significant contributions to the fast development of this field. Some of these discipline are- biochemical engineering, physiology, biochemistry, food science, material science, bioinformatics, immunology, molecular biology, chemical engineering etc. Biotechnology is also improving the lives of people around the world. Biotechnology also has affected economy in a positive way due to the creation and growth of small business, generation of new jobs. Agricultural biotechnology has reduced our dependency on pesticides. Bioremediation technologies are being used to clean our environment by removing toxic substances from contaminated ground water and soils. about 60% of the biotechnology products in the market are healthcare products and 21% are products used in agriculture and animal husbandry. A considerable amount of efforts in research are on, to use and extract benefit from this interesting and upcoming field for the betterment of human life and the environment. Many biochemical companies are involved in the production of biotechnological products using genetic engineering techniques

  • Track 22-1Ruminant Nutrition
  • Track 22-2Cancer therapy by Immunogenic Oligopeptide
  • Track 22-3Reproductive Medicine
  • Track 22-4Urology
  • Track 22-5Biotechnology for Biofuels
  • Track 22-6Nutritional approach vs Alzheimer’s disease

The method by which a drug is delivered can have a significant effect on its efficacy. Some drugs have an optimum concentration range within which maximum benefit is derived, and concentrations above or below this range can be toxic or produce no therapeutic benefit at all. On the other hand, the very slow progress in the efficacy of the treatment of severe diseases, has suggested a growing need for a multidisciplinary approach to the delivery of therapeutics to targets in tissues. From this, new ideas on controlling the pharmacokinetics, pharmacodynamics, non-specific toxicity, immunogenicity, biorecognition, and efficacy of drugs were generated. These new strategies, often called drug delivery systems (DDS), are based on interdisciplinary approaches that combine polymer science, pharmaceutics, bioconjugate chemistry, and molecular biology.

  • Track 23-1Pre-Formulation & Formulation Aspects
  • Track 23-2 Peptides and Protein Drug Delivery
  • Track 23-3Medical Devices for Drug Delivery
  • Track 23-4Vaccine Drug Delivery Systems
  • Track 23-5Biomaterials in Drug Delivery
  • Track 23-6Smart Drug Delivery Systems
  • Track 23-7Pharmaceutical Nanotechnology
  • Track 23-8Nanotechnology in Drug Delivery
  • Track 23-9Nanoparticulate Drug Delivery Systems
  • Track 23-10Routes of Drug Delivery
  • Track 23-11Drug Targeting and Design
  • Track 23-12Pharmacokinetics and Pharmacodynamics in Drugs
  • Track 23-13Global Drug Delivery Policy

Nanomedicine can be defined as medical application of nanotechnology. Nanomedicine ranges from the medical applications of nanomaterials and biological devices, Nano electronic devices &biosensors and possible future applications of molecular nanotechnology. Nanomaterials can be functionalised to interface with biological molecules & structures as the size of nanomaterials is comparable to most biological molecules and structures. Nanomaterials can be useful for both in vivo and in vitro biomedical research and applications and integration of nanomaterials with biology has led to the development of advanced diagnostic devices, physical therapy applications, analytical tools, contrast agents and drug delivery vehicles. Nanomedicine strives for delivering valuable set of research tools & clinically useful devices and its industry sales reached $16 billion in 2015, with an average of $3.8 billion investment in nanotechnology R&D every year and increase of 45% per year global funding for emerging nanotechnology

  • Track 24-1Nanotechnology in Healthcare
  • Track 24-2Biomaterials and Medical Devices
  • Track 24-3Nanomaterials and Nanotechnology
  • Track 24-4Nano Composites and Multiscale Nano materials
  • Track 24-5Advanced Characterization of Nanomaterials
  • Track 24-6Graphene modification and functionalization
  • Track 24-7Nano in Pharmaceutical Chemistry
  • Track 24-8Nanomedicine in Drug Delivery Systems
  • Track 24-9Nanotechnology for Environment and Nano safety
  • Track 24-10Applications of Nanotechnology in Health Care
  • Track 24-11Nano medicine and Nano pharmaceuticals
  • Track 24-12Future prospects of Nanotechnologies and commercial viability

Biotherapeutics usually refers to therapeutic materials produced using biological means, including recombinant DNA technology. Biotherapeutics are basically agents, used to treat and avoid human disease by interrelating with the microbial ecology of the host. Biotherapeutics have the ability to target specific molecules within the human body, and have a good track record with patient safety. Manufacturing biotherapeutics is complex, as they are larger compounds in both size and structure, and can be sensitive to environmental conditions. Additionally, Biotherapeutic manufacturing includes many regulations such as signal processing, biology and engineering process control. Moreover, they require sophisticated production and control processes and are dependent upon the host cells of living organisms to produce the necessary active pharmaceutical substances.

  • Track 25-1Advancements in Biotherapeutics
  • Track 25-2Bioanalytical Techniques
  • Track 25-3Drug Metabolism Studies
  • Track 25-4Drug Analysis
  • Track 25-5Structural Analysis of Small Organic Molecules
  • Track 25-6Analytical Biotherapeutics
  • Track 25-7 Biotherapy
  • Track 25-8Clinical Biotherapeutics
  • Track 25-9 Cancer Biotherapeutics
  • Track 25-10Stem Cell Therapy
  • Track 25-11Innovative Therapies for Serious Diseases
  • Track 25-12Immunopharmacotherapy
  • Track 25-13Oncolytic Virotherapy
  • Track 25-14MicroRNAs (miRNAs) Biotherapeutics
  • Track 25-15Synthetic Immunology
  • Track 25-16Chromatographic Techniques
Business development entails tasks and processes to develop and implement growth opportunities within and between organizations. It is a subset of the fields of business, commerce and organizational theory. Business development is the creation of long-term value for an organization from customers, markets, and relationships
 
The business developer is concerned with the analytical preparation of potential growth opportunities for the senior management or board of directors as well as the subsequent support and monitoring of its implementation. Both in the development phase and the implementation phase, the business developer collaborates and integrates the knowledge and feedback from the organization’s specialist functions, for example, research and development, production, marketing, and sales to assure that the organization is capable of implementing the growth opportunity successfully. The business developers' tools to address the business development tasks are the business model answering "how do we make money" and its analytical backup and roadmap for implementation, the business plan.
 
  • Track 26-1Strategic Alliances
  • Track 26-2Venture Capital and Financing
  • Track 26-3Outsourcing
  • Track 26-4Merger and Acquisitions
  • Track 26-5Licensing
  • Track 26-6Growth
  • Track 26-7Business Models and Strategies
  • Track 26-8Product Opportunities
  • Track 26-9Partnering Trends
  • Track 26-10Intellectual Property